MSE-CNN Implementation 1
Code database with the implementation of MSE-CNN, from the paper 'DeepQTMT: A Deep Learning Approach for Fast QTMT-based CU Partition of Intra-mode VVC'
Loading...
Searching...
No Matches
Functions | Variables
eval_model_stg6_metrics Namespace Reference

Functions

 test (dataloader, model, device, loss_name)
 
 val_setup (dataloader_val, model, device)
 
 main ()
 

Variables

 parser = argparse.ArgumentParser(description=constants.script_description)
 
 type
 
 args = parser.parse_args()
 
 loss_threshold = float("-inf")
 
int qp = 32
 
 batch_size = args.batch
 
 device = args.dev
 
 num_workers = args.workers
 
 n_mod = args.nmod
 
 l_path_val = args.labels
 
list rs = [0.3, 0.5]
 
 writer = SummaryWriter("runs/MSECNN_Eval_"+n_mod)
 
str files_mod_name_stats = "_multi_batch_val_batch_{batch}_QP_{QP}_{nmod}".format(batch=batch_size, QP=qp, nmod=n_mod)
 

Detailed Description

@package docstring 

@file eval_model_stg6_metrics.py 

@brief Evaluates stage 6 
 
@section libraries_eval_model_stg6_metrics Libraries 
- sklearn.metrics
- MSECNN
- torch.utils.data
- torch
- argparse
- torch.utils.tensorboard
- datetime
- train_model_utils
- utils
- constants
- CustomDataset
- sys
- time
- matplotlib.pyplot

@section classes_eval_model_stg6_metrics Classes 
- None

@section functions_eval_model_stg6_metrics Functions 
- test(dataloader, model, device, loss_name)
- val_setup(dataloader_val, model, device)
- main()
 
@section global_vars_eval_model_stg6_metrics Global Variables 
- parser 
- args 
- loss_threshold 
- batch_size 
- qp 
- device 
- n_mod 
- num_workers 
- rs 
- writer 
- l_path_val 
- files_mod_name_stats 

@section todo_eval_model_stg6_metrics TODO 
- None 

@section license License 
MIT License 
Copyright (c) 2022 Raul Kevin do Espirito Santo Viana
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

@section author_eval_model_stg6_metrics Author(s)
- Created by Raul Kevin Viana
- Last time modified is 2023-01-29 22:23:10.679038

Function Documentation

◆ main()

eval_model_stg6_metrics.main ( )

◆ test()

eval_model_stg6_metrics.test (   dataloader,
  model,
  device,
  loss_name 
)

◆ val_setup()

eval_model_stg6_metrics.val_setup (   dataloader_val,
  model,
  device 
)

Variable Documentation

◆ args

eval_model_stg6_metrics.args = parser.parse_args()

◆ batch_size

eval_model_stg6_metrics.batch_size = args.batch

◆ device

eval_model_stg6_metrics.device = args.dev

◆ files_mod_name_stats

str eval_model_stg6_metrics.files_mod_name_stats = "_multi_batch_val_batch_{batch}_QP_{QP}_{nmod}".format(batch=batch_size, QP=qp, nmod=n_mod)

◆ l_path_val

eval_model_stg6_metrics.l_path_val = args.labels

◆ loss_threshold

eval_model_stg6_metrics.loss_threshold = float("-inf")

◆ n_mod

eval_model_stg6_metrics.n_mod = args.nmod

◆ num_workers

eval_model_stg6_metrics.num_workers = args.workers

◆ parser

eval_model_stg6_metrics.parser = argparse.ArgumentParser(description=constants.script_description)

◆ qp

int eval_model_stg6_metrics.qp = 32

◆ rs

list eval_model_stg6_metrics.rs = [0.3, 0.5]

◆ type

eval_model_stg6_metrics.type

◆ writer

eval_model_stg6_metrics.writer = SummaryWriter("runs/MSECNN_Eval_"+n_mod)