MSE-CNN Implementation 1
Code database with the implementation of MSE-CNN, from the paper 'DeepQTMT: A Deep Learning Approach for Fast QTMT-based CU Partition of Intra-mode VVC'
|
Namespaces | |
namespace | eval_model_stg6_metrics |
Functions | |
eval_model_stg6_metrics.test (dataloader, model, device, loss_name) | |
eval_model_stg6_metrics.val_setup (dataloader_val, model, device) | |
eval_model_stg6_metrics.main () | |
Variables | |
eval_model_stg6_metrics.parser = argparse.ArgumentParser(description=constants.script_description) | |
eval_model_stg6_metrics.type | |
eval_model_stg6_metrics.args = parser.parse_args() | |
eval_model_stg6_metrics.loss_threshold = float("-inf") | |
int | eval_model_stg6_metrics.qp = 32 |
eval_model_stg6_metrics.batch_size = args.batch | |
eval_model_stg6_metrics.device = args.dev | |
eval_model_stg6_metrics.num_workers = args.workers | |
eval_model_stg6_metrics.n_mod = args.nmod | |
eval_model_stg6_metrics.l_path_val = args.labels | |
list | eval_model_stg6_metrics.rs = [0.3, 0.5] |
eval_model_stg6_metrics.writer = SummaryWriter("runs/MSECNN_Eval_"+n_mod) | |
str | eval_model_stg6_metrics.files_mod_name_stats = "_multi_batch_val_batch_{batch}_QP_{QP}_{nmod}".format(batch=batch_size, QP=qp, nmod=n_mod) |