MSE-CNN Implementation 1
Code database with the implementation of MSE-CNN, from the paper 'DeepQTMT: A Deep Learning Approach for Fast QTMT-based CU Partition of Intra-mode VVC'
Loading...
Searching...
No Matches
Namespaces | Functions | Variables
eval_model_stg6_metrics.py File Reference

Namespaces

namespace  eval_model_stg6_metrics
 

Functions

 eval_model_stg6_metrics.test (dataloader, model, device, loss_name)
 
 eval_model_stg6_metrics.val_setup (dataloader_val, model, device)
 
 eval_model_stg6_metrics.main ()
 

Variables

 eval_model_stg6_metrics.parser = argparse.ArgumentParser(description=constants.script_description)
 
 eval_model_stg6_metrics.type
 
 eval_model_stg6_metrics.args = parser.parse_args()
 
 eval_model_stg6_metrics.loss_threshold = float("-inf")
 
int eval_model_stg6_metrics.qp = 32
 
 eval_model_stg6_metrics.batch_size = args.batch
 
 eval_model_stg6_metrics.device = args.dev
 
 eval_model_stg6_metrics.num_workers = args.workers
 
 eval_model_stg6_metrics.n_mod = args.nmod
 
 eval_model_stg6_metrics.l_path_val = args.labels
 
list eval_model_stg6_metrics.rs = [0.3, 0.5]
 
 eval_model_stg6_metrics.writer = SummaryWriter("runs/MSECNN_Eval_"+n_mod)
 
str eval_model_stg6_metrics.files_mod_name_stats = "_multi_batch_val_batch_{batch}_QP_{QP}_{nmod}".format(batch=batch_size, QP=qp, nmod=n_mod)