MSE-CNN Implementation 1
Code database with the implementation of MSE-CNN, from the paper 'DeepQTMT: A Deep Learning Approach for Fast QTMT-based CU Partition of Intra-mode VVC'
Loading...
Searching...
No Matches
Public Member Functions | Public Attributes | List of all members
msecnn_raulkviana.msecnn.MseCnnStgX Class Reference
Inheritance diagram for msecnn_raulkviana.msecnn.MseCnnStgX:
msecnn_raulkviana.msecnn.MseCnnStg1

Public Member Functions

 __init__ (self, device="cpu", QP=32)
 
 residual_unit_stg1 (self, x, nr)
 Generic residual unit.
 
 residual_unit_stg2 (self, x, nr)
 Generic residual unit.
 
 residual_unit (self, x, nr)
 Generic residual unit.
 
 pass_through_subnet (self, x)
 This functions propagates the it's input through a specific subnetwork depending on the shape of the input.
 
 forward (self, cu, ap, splits=None, sizes=None, coords=None)
 This functions propagates the input to the output.
 
- Public Member Functions inherited from msecnn_raulkviana.msecnn.MseCnnStg1
 __init__ (self, device="cpu", QP=32)
 
 residual_unit_stg1 (self, x, nr)
 Generic residual unit.
 
 residual_unit_stg2 (self, x, nr)
 Generic residual unit.
 
 nr_calc (self, ac, ap)
 Calculate the number of residual units.
 
 split (self, cu, coords, sizes, split)
 Splits feature maps in specific way.
 
 forward (self, cu, sizes=None, coords=None)
 This functions propagates the input to the output.
 

Public Attributes

 simple_conv_stg1
 
 simple_conv_no_activation_stg1
 
 simple_conv2_stg1
 
 simple_conv_no_activation2_stg1
 
 activation_PRelu_stg1
 
 activation_PRelu2_stg1
 
 simple_conv_stg2
 
 simple_conv_no_activation_stg2
 
 simple_conv2_stg2
 
 simple_conv_no_activation2_stg2
 
 activation_PRelu_stg2
 
 activation_PRelu2_stg2
 
 first_simple_conv
 
 sub_net
 
 conv_32_64
 Sub-networks Convolutional layers Min 32.
 
 conv_32_32
 
 conv_16_16
 
 conv_16_32
 
 conv_16_64
 
 conv_8_8
 
 conv_8_16
 
 conv_8_32
 
 conv_8_64
 
 conv_4_32
 
 conv_4_16
 
 conv_4_8
 
 conv_4_4
 
 sub_net_min_32
 
 sub_net_min_16
 
 sub_net_min_8
 
 sub_net_min_4
 
 simple_conv
 
 simple_conv_no_activation
 
 activation_PRelu
 
 simple_conv2
 
 simple_conv_no_activation2
 
 activation_PRelu2
 
- Public Attributes inherited from msecnn_raulkviana.msecnn.MseCnnStg1
 first_simple_conv
 
 simple_conv_stg1
 
 simple_conv_no_activation_stg1
 
 simple_conv2_stg1
 
 simple_conv_no_activation2_stg1
 
 activation_PRelu_stg1
 
 activation_PRelu2_stg1
 
 simple_conv_stg2
 
 simple_conv_no_activation_stg2
 
 simple_conv2_stg2
 
 simple_conv_no_activation2_stg2
 
 activation_PRelu_stg2
 
 activation_PRelu2_stg2
 
 sub_net
 

Constructor & Destructor Documentation

◆ __init__()

msecnn_raulkviana.msecnn.MseCnnStgX.__init__ (   self,
  device = "cpu",
  QP = 32 
)

Member Function Documentation

◆ forward()

msecnn_raulkviana.msecnn.MseCnnStgX.forward (   self,
  cu,
  ap,
  splits = None,
  sizes = None,
  coords = None 
)

This functions propagates the input to the output.

Parameters
[in]cuInput to the model
[out]logitsVector of raw predictions that a classification model generates

Reimplemented from msecnn_raulkviana.msecnn.MseCnnStg1.

◆ pass_through_subnet()

msecnn_raulkviana.msecnn.MseCnnStgX.pass_through_subnet (   self,
  x 
)

This functions propagates the it's input through a specific subnetwork depending on the shape of the input.

Parameters
[in]xInput to the model
[out]logitsVector of raw predictions that a classification model generates

◆ residual_unit()

msecnn_raulkviana.msecnn.MseCnnStgX.residual_unit (   self,
  x,
  nr 
)

Generic residual unit.

Parameters
[in]xInput of the network
[in]nrNumber of residual units

◆ residual_unit_stg1()

msecnn_raulkviana.msecnn.MseCnnStgX.residual_unit_stg1 (   self,
  x,
  nr 
)

Generic residual unit.

Parameters
[in]xInput of the network
[in]nrNumber of residual units

Reimplemented from msecnn_raulkviana.msecnn.MseCnnStg1.

◆ residual_unit_stg2()

msecnn_raulkviana.msecnn.MseCnnStgX.residual_unit_stg2 (   self,
  x,
  nr 
)

Generic residual unit.

Parameters
[in]xInput of the network
[in]nrNumber of residual units

Reimplemented from msecnn_raulkviana.msecnn.MseCnnStg1.

Member Data Documentation

◆ activation_PRelu

msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu

◆ activation_PRelu2

msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu2

◆ activation_PRelu2_stg1

msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu2_stg1

◆ activation_PRelu2_stg2

msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu2_stg2

◆ activation_PRelu_stg1

msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu_stg1

◆ activation_PRelu_stg2

msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu_stg2

◆ conv_16_16

msecnn_raulkviana.msecnn.MseCnnStgX.conv_16_16

◆ conv_16_32

msecnn_raulkviana.msecnn.MseCnnStgX.conv_16_32

◆ conv_16_64

msecnn_raulkviana.msecnn.MseCnnStgX.conv_16_64

◆ conv_32_32

msecnn_raulkviana.msecnn.MseCnnStgX.conv_32_32

◆ conv_32_64

msecnn_raulkviana.msecnn.MseCnnStgX.conv_32_64

Sub-networks Convolutional layers Min 32.

◆ conv_4_16

msecnn_raulkviana.msecnn.MseCnnStgX.conv_4_16

◆ conv_4_32

msecnn_raulkviana.msecnn.MseCnnStgX.conv_4_32

◆ conv_4_4

msecnn_raulkviana.msecnn.MseCnnStgX.conv_4_4

◆ conv_4_8

msecnn_raulkviana.msecnn.MseCnnStgX.conv_4_8

◆ conv_8_16

msecnn_raulkviana.msecnn.MseCnnStgX.conv_8_16

◆ conv_8_32

msecnn_raulkviana.msecnn.MseCnnStgX.conv_8_32

◆ conv_8_64

msecnn_raulkviana.msecnn.MseCnnStgX.conv_8_64

◆ conv_8_8

msecnn_raulkviana.msecnn.MseCnnStgX.conv_8_8

◆ first_simple_conv

msecnn_raulkviana.msecnn.MseCnnStgX.first_simple_conv

◆ simple_conv

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv

◆ simple_conv2

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv2

◆ simple_conv2_stg1

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv2_stg1

◆ simple_conv2_stg2

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv2_stg2

◆ simple_conv_no_activation

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation

◆ simple_conv_no_activation2

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation2

◆ simple_conv_no_activation2_stg1

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation2_stg1

◆ simple_conv_no_activation2_stg2

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation2_stg2

◆ simple_conv_no_activation_stg1

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation_stg1

◆ simple_conv_no_activation_stg2

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation_stg2

◆ simple_conv_stg1

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_stg1

◆ simple_conv_stg2

msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_stg2

◆ sub_net

msecnn_raulkviana.msecnn.MseCnnStgX.sub_net

◆ sub_net_min_16

msecnn_raulkviana.msecnn.MseCnnStgX.sub_net_min_16

◆ sub_net_min_32

msecnn_raulkviana.msecnn.MseCnnStgX.sub_net_min_32

◆ sub_net_min_4

msecnn_raulkviana.msecnn.MseCnnStgX.sub_net_min_4

◆ sub_net_min_8

msecnn_raulkviana.msecnn.MseCnnStgX.sub_net_min_8

The documentation for this class was generated from the following file: