|
MSE-CNN Implementation 1
Code database with the implementation of MSE-CNN, from the paper 'DeepQTMT: A Deep Learning Approach for Fast QTMT-based CU Partition of Intra-mode VVC'
|
Public Member Functions | |
| __init__ (self, device="cpu", QP=32) | |
| residual_unit_stg1 (self, x, nr) | |
| Generic residual unit. | |
| residual_unit_stg2 (self, x, nr) | |
| Generic residual unit. | |
| residual_unit (self, x, nr) | |
| Generic residual unit. | |
| pass_through_subnet (self, x) | |
| This functions propagates the it's input through a specific subnetwork depending on the shape of the input. | |
| forward (self, cu, ap, splits=None, sizes=None, coords=None) | |
| This functions propagates the input to the output. | |
Public Member Functions inherited from msecnn_raulkviana.msecnn.MseCnnStg1 | |
| __init__ (self, device="cpu", QP=32) | |
| residual_unit_stg1 (self, x, nr) | |
| Generic residual unit. | |
| residual_unit_stg2 (self, x, nr) | |
| Generic residual unit. | |
| nr_calc (self, ac, ap) | |
| Calculate the number of residual units. | |
| split (self, cu, coords, sizes, split) | |
| Splits feature maps in specific way. | |
| forward (self, cu, sizes=None, coords=None) | |
| This functions propagates the input to the output. | |
| msecnn_raulkviana.msecnn.MseCnnStgX.__init__ | ( | self, | |
device = "cpu", |
|||
QP = 32 |
|||
| ) |
Reimplemented from msecnn_raulkviana.msecnn.MseCnnStg1.
| msecnn_raulkviana.msecnn.MseCnnStgX.forward | ( | self, | |
| cu, | |||
| ap, | |||
splits = None, |
|||
sizes = None, |
|||
coords = None |
|||
| ) |
This functions propagates the input to the output.
| [in] | cu | Input to the model |
| [out] | logits | Vector of raw predictions that a classification model generates |
Reimplemented from msecnn_raulkviana.msecnn.MseCnnStg1.
| msecnn_raulkviana.msecnn.MseCnnStgX.pass_through_subnet | ( | self, | |
| x | |||
| ) |
This functions propagates the it's input through a specific subnetwork depending on the shape of the input.
| [in] | x | Input to the model |
| [out] | logits | Vector of raw predictions that a classification model generates |
| msecnn_raulkviana.msecnn.MseCnnStgX.residual_unit | ( | self, | |
| x, | |||
| nr | |||
| ) |
Generic residual unit.
| [in] | x | Input of the network |
| [in] | nr | Number of residual units |
| msecnn_raulkviana.msecnn.MseCnnStgX.residual_unit_stg1 | ( | self, | |
| x, | |||
| nr | |||
| ) |
Generic residual unit.
| [in] | x | Input of the network |
| [in] | nr | Number of residual units |
Reimplemented from msecnn_raulkviana.msecnn.MseCnnStg1.
| msecnn_raulkviana.msecnn.MseCnnStgX.residual_unit_stg2 | ( | self, | |
| x, | |||
| nr | |||
| ) |
Generic residual unit.
| [in] | x | Input of the network |
| [in] | nr | Number of residual units |
Reimplemented from msecnn_raulkviana.msecnn.MseCnnStg1.
| msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu |
| msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu2_stg1 |
| msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu2_stg2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu_stg1 |
| msecnn_raulkviana.msecnn.MseCnnStgX.activation_PRelu_stg2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_16_16 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_16_32 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_16_64 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_32_32 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_32_64 |
Sub-networks Convolutional layers Min 32.
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_4_16 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_4_32 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_4_4 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_4_8 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_8_16 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_8_32 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_8_64 |
| msecnn_raulkviana.msecnn.MseCnnStgX.conv_8_8 |
| msecnn_raulkviana.msecnn.MseCnnStgX.first_simple_conv |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv2_stg1 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv2_stg2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation2_stg1 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation2_stg2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation_stg1 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_no_activation_stg2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_stg1 |
| msecnn_raulkviana.msecnn.MseCnnStgX.simple_conv_stg2 |
| msecnn_raulkviana.msecnn.MseCnnStgX.sub_net |
| msecnn_raulkviana.msecnn.MseCnnStgX.sub_net_min_16 |
| msecnn_raulkviana.msecnn.MseCnnStgX.sub_net_min_32 |
| msecnn_raulkviana.msecnn.MseCnnStgX.sub_net_min_4 |
| msecnn_raulkviana.msecnn.MseCnnStgX.sub_net_min_8 |