MSE-CNN Implementation 1
Code database with the implementation of MSE-CNN, from the paper 'DeepQTMT: A Deep Learning Approach for Fast QTMT-based CU Partition of Intra-mode VVC'
Loading...
Searching...
No Matches
Model coeficients

Here in this folder you can find the last and best coeficients obtained during training for each stage. To load these coeficients in the following way

>>> import MSECNN
>>> import train_model_utils
>>>
>>> # Initialize parameters
>>> path_to_folder_with_model_params = "model_coefficients/best_coefficients"
>>> device = "cuda:0"
>>> qp = 32 # Quantisation Parameter
>>>
>>> # Initialize Model
>>> stg1_2 = msecnn.MseCnnStg1(device=device, QP=qp).to(device)
>>> stg3 = msecnn.MseCnnStgX(device=device, QP=qp).to(device)
>>> stg4 = msecnn.MseCnnStgX(device=device, QP=qp).to(device)
>>> stg5 = msecnn.MseCnnStgX(device=device, QP=qp).to(device)
>>> stg6 = msecnn.MseCnnStgX(device=device, QP=qp).to(device)
>>> model = (stg1_2, stg3, stg4, stg5, stg6)
>>>
>>> model = train_model_utils.load_model_parameters_eval(model, path_to_folder_with_model_params, device) # Load for all of the stages